16 research outputs found

    Une approche avec l’apprentissage par renforcement profond pour le protocole IRSA

    Get PDF
    Irregular Repetition Slotted Aloha (IRSA) is one candidate member of a family of random access-based protocols to solve massive connectivity problem for Internet of Things (IoT) networks. The key features of this protocol is to allow users to repeat their packets multiple times in the same frame and use Successive Interference Cancellation (SIC) to decode collided packets at the receiver. Although, the plain IRSA scheme can asympotically reach the optimal 1 [packet/slot]. But there are still many obstacles to achieve this performance, specially when considering short frame length. In this report, we study two new variants of IRSA with short frame length, and we optimize their performance using a Deep Reinforcement Learning approach. In our first variant, Random Codeword Selection-IRSA (RC-IRSA), we consider an IRSA approach with random codeword selection, where each codeword represents the transmission strategy of a user on the slots. We apply a Deep Reinforcement Learning to optimize RC-IRSA: we train a Deep Neural Network model that choses the slots on which the user sends its packets. Our DRL approach for RC-IRSA is a new optimization method for IRSA using a DRL approach and it works as a base for our second proposed IRSA variant DS-IRSA.Our second variant is a sensing protocol based on IRSA and trained with machine learning to synchronize the nodes during the transmission and avoid collisions. For that aim, we proposed DS-IRSA, Deep Learning Sensing-based IRSA protocol which is composed of two phases: a sensing phase, where the nodes can sense the channel and send short jamming signals, followed by a classical IRSA transmission phase. We use a DRL algorithm to optimize its performance. Our proposed protocol has shown an excellent performance to achieve an optimal performance of almost 1 [decoded user/slot] for small frame sizes (≀ 5) slots and with enough sensing duration.Irregular Repetition Slotted Aloha (IRSA) est un candidat d’une famille de protocoles d’accĂšs alĂ©atoire pour rĂ©soudre le problĂšme de la connectivitĂ© massive pour les rĂ©seaux de l’internet des objets (IoT). Les principales caractĂ©ristiques de ce protocole sont de permettre aux utilisateurs de rĂ©pĂ©ter leurs paquets plusieurs fois dans la mĂȘme trame et d’utiliser l’annulation successive d’interfĂ©rences (SIC) au niveau du rĂ©cepteur pour dĂ©coder les paquets en collision. Le protocole IRSA simple peut asympotiquement atteindre le 1 [paquet/slot] optimal. Mais il existe encore de nombreux obstacles pour atteindre ces performances, en particulier lorsque l’on considĂšre une longueur courte de trame. Dans ce rapport, nous Ă©tudions deux nouvelles variantes d’IRSA avec une longueur courte de trame, et nous optimisons leurs performances en utilisant une approche d’apprentissage par renforcement profond (DRL). Dans notre premiĂšre variante, Random Codeword Selection-IRSA (RC-IRSA), nous considĂ©rons une approche IRSA avec sĂ©lection alĂ©atoire de mots de code, oĂč chaque mot de code reprĂ©sente la stratĂ©gie de transmission d’un utilisateur sur les slots. Nous appliquons un DRL pour optimiser le RC-IRSA : nous utilisons un modĂšle avec des rĂ©seaux de neurones multi-couches qui choisit les slots sur lesquels l’utilisateur envoie ses paquets. Notre approche DRL pour RC-IRSA est une nouvelle mĂ©thode d’optimisation pour IRSA utilisant une approche DRL et elle fonctionne comme une base pournotre proposition de deuxiĂšme variante d’IRSA, DS-IRSA. Cette deuxiĂšme variante est un protocole d’écoute basĂ© sur IRSA et entraĂźnĂ© avec un model d’apprentissage automatique pour synchroniser les nƓuds pendant la transmission et Ă©viter les collisions. Ainsi, nous proposons DS-IRSA, le protocole IRSA basĂ© sur le DRL qui est composĂ© de deux phases : une phase de dĂ©tection, oĂč les nƓuds peuvent dĂ©tecter le canal et envoyer de courts signaux de d’occupation du canal, suivie d’une phase de transmission IRSA classique. Nous utilisons un algorithme DRL pour optimiser ses performances. Notre protocole proposĂ© a montrĂ© d’excellentes performances et atteint une performance optimale de prĂšs de 1 [utilisateur dĂ©codĂ©/slot] pour les petites tailles de trame (≀ 5) slots et avec une durĂ©e de dĂ©tection suffisante

    A Regret Minimization Approach to Frameless Irregular Repetition Slotted Aloha: IRSA-RM

    Get PDF
    International audienceWireless communications play an important part in the systems of the Internet of Things (IoT). Recently, there has been a trend towards long-range communications systems for the IoT, including cellular networks. For many use cases, such as massive machine-type communications (mMTC), performance can be gained by moving away from the classical model of connection establishment and adopting random access methods. Associated with physical layer techniques such as Successive Interference Cancellation (SIC), or Non-Orthogonal Multiple Access (NOMA), the performance of random access can be dramatically improved, giving rise to novel random access protocol designs. This article studies one of these modern random access protocols: Irregular Repetition Slotted Aloha (IRSA). Since optimizing its parameters is not an easily solved problem, in this article we use a reinforcement learning approach for that purpose. We adopt one specific variant of reinforcement learning, Regret Minimization, to learn the protocol parameters. We explain why it is selected, how to apply it to our problem with centralized learning, and finally, we provide both simulation results and insights into the learning process. The results obtained show the excellent performance of IRSA when it is optimized with Regret Minimization

    Multi-Power Irregular Repetition Slotted ALOHA in Heterogeneous IoT networks

    Get PDF
    International audienceIrregular Repetition Slotted Aloha (IRSA) is one candidate member of a family of random access protocols to provide solutions for massive parallel connections in the Internet of Things (IoT) networks. The key features of this protocol are repeating the transmitted packets several times and using Successive Interference Cancellation (SIC) at the decoder to resolve the collisions, which dramatically increases the performance of Slotted ALOHA. Motivated by multiple previous studies of IRSA performance in different settings, we focus on the scenario of an IoT network where the packets of different nodes are received with different powers at the base station, either per design due to different transmission power, or induced by the fact that the nodes are at different distances from the base station. In such a scenario, the capture effect emerges at the receiver, which in turn enhances the protocol performance. We analyze the protocol behavior using a new density evolution which is based on dividing nodes into classes with different powers. By computing the probability to decode a packet in the presence of the interference, we explore the achievable throughput and its associated gain and show the excellent performance of Multi-Power IRSA

    On the Performance of Irregular Repetition Slotted Aloha with Multiple Packet Reception

    Get PDF
    International audienceA modern method of random access for packet networks, named ``Irregular Repetition Slotted Aloha (IRSA)'', had been proposed: it is based repeating transmitted packets, and on the use of successive interference cancellation at the receiver. In classical idealized settings of slotted random access protocols (where slotted ALOHA achieves 1/e), it has been shown that IRSA could asymptotically achieve the maximal throughput of 1 packet per slot. Additionally, IRSA had previously been studied for many different variants and settings, including the case where the receiver is equipped with ``multiple-packet reception'' (MPR) capability.In this article, we extensively revisit the case of IRSA with MPR. First, one of our major results is the proof that K-IRSA cannot reach the natural bound of throughput, and we prove a new, lower bound for its performance. Second, we give a simple expression for its excellent loss rate at lower loads. Third, we show how to formulate the search for the appropriate parameters of IRSA as an optimization problem, and how to solve it efficiently. By doing that for a comprehensive set of parameters, and by providing this work with simulations, we give numerical results that shed light on the performance of IRSA with MPR

    Design of Coded Slotted ALOHA with Interference Cancellation Errors

    Get PDF
    International audienceCoded Slotted ALOHA (CSA) is a random access scheme based on the application of packet erasure correcting codes to transmitted packets and the use of successive interference cancellation at the receiver. CSA has been widely studied and a common assumption is that interference cancellation can always be applied perfectly. In this paper, we study the design of CSA protocol, accounting for a non-zero probability of error due to imperfect interference cancellation (IC). A classical method to evaluate the performance of such protocols is density evolution, originating from coding theory, and that we adapt to our assumptions. Analyzing the convergence of density evolution in asymptotic conditions, we derive the optimal parameters of CSA, i.e., the set of code selection probabilities of users that maximizes the channel load. A new parameter is introduced to model the packet loss rate of the system, which is non-zero due to potential IC errors. Multi-packet reception (MPR) and the performance of 2-MPR are also studied. We investigate the trade-off between optimal load and packet loss rate, which sheds light on new optimal distributions that outperform known ones. Finally, we show that our asymptotic analytical results are consistent with simulations obtained on a finite number of slots

    Transmission sans connexion dans les réseaux sans fil

    No full text
    L'origine concernant l'idĂ©e d'ajouter de l'intelligence aux objets de base et de les faire communiquer n'est pas connue prĂ©cisĂ©ment. Mais ces derniers temps, l'Ă©mergence d'Internet en tant que rĂ©seau de communication global a aussi motivĂ© l'utilisation de son architecture et de ses protocoles pour connecter des objets. C'est par exemple le cas cĂ©lĂšbre du distributeur automatique de sodas connectĂ© Ă  l'ARPANET dans les annĂ©es 1980. Au cours des deux derniĂšres dĂ©cennies, de nombreuses amĂ©liorations technologiques ont Ă©tĂ© dĂ©veloppĂ©es pour rendre possible l'Internet des objets (IoT). Un scĂ©nario d'un rĂ©seau IoT typique consiste Ă  connecter des dispositifs embarquĂ©s composĂ©s de capteurs environnementaux, de microcontrĂŽleurs et de matĂ©riel de communication Ă  un nƓud de collecte central. L'ensemble des donnĂ©es recueillies par ces nƓuds permettra d'analyser et de comprendre prĂ©cisĂ©ment les phĂ©nomĂšnes et comportements se produisant dans cet environnement. Les applications des technologies IoT sont infinies, car elles sont adaptables Ă  presque tous les systĂšmes, que l'on doit surveiller et contrĂŽler Ă  distance, pouvant fournir des informations sur son Ă©tat, son fonctionnement et son environnement. Les villes intelligentes, les soins, l'automatisation industrielle et la technologie portable sont quelques-unes des applications de l'IoT qui promettent de rendre notre vie plus sĂ»re et plus facile. Certains dĂ©fis en matiĂšre de recherche et de technologie doivent ĂȘtre relevĂ©s pour la mise en Ɠuvre et la large dissĂ©mination des applications de l'IoT comme le dĂ©ploiement, la mise en rĂ©seau, la sĂ©curitĂ©, la rĂ©silience et le contrĂŽle de l'alimentation des Ă©quipements. Cette demande massive de connexion dans les rĂ©seaux IoT introduit de nouveaux dĂ©fis en termes de connectivitĂ©, de fiabilitĂ© et de technologie. Au niveau de la radio, les rĂ©seaux IoT reprĂ©sentent un Ă©norme afflux de divers appareils qui communiquent via le mĂȘme support radio partagĂ©. Cependant, bon nombre de ces appareils sont difficiles Ă  sĂ©curiser et Ă  manipuler. L'un des principaux dĂ©fis du dĂ©ploiement des rĂ©seaux IoT est le manque de solutions efficaces qui permettent un nombre massif de connexions tout en rĂ©pondant en mĂȘme temps aux exigences de faible latence et de faible coĂ»t. De plus, il y a eu rĂ©cemment une tendance vers des systĂšmes de communication Ă  longue portĂ©e pour l'IoT et aussi pour les rĂ©seaux cellulaires. Pour de nombreux cas d'utilisation, tels que les communications massives de type machine (mMTC), les performances peuvent ĂȘtre amĂ©liorĂ©es en s'Ă©loignant du modĂšle classique d'Ă©tablissement de connexion et en adoptant des mĂ©thodes d'accĂšs alĂ©atoire sans attribution prĂ©dĂ©terminĂ©e. AssociĂ© Ă  des techniques de couche physique telles que l'annulation successive des interfĂ©rences (SIC) ou l'accĂšs multiple non orthogonal (NOMA), les performances de l'accĂšs alĂ©atoire peuvent ĂȘtre amĂ©liorĂ©es, donnant lieu Ă  de nouvelles conceptions de protocoles d'accĂšs alĂ©atoire. Dans cette thĂšse, nous nous concentrons sur l'un des candidats modernes pour les protocoles d'accĂšs alĂ©atoire bien adaptĂ©s Ă  l'IoT :ALOHA Ă  rĂ©pĂ©tition irrĂ©guliĂšre (IRSA). Comme des solutions sont nĂ©cessaires pour surmonter les dĂ©fis de l'IoT, nous Ă©tudions le schĂ©ma d'accĂšs alĂ©atoire IRSA sous de nouveaux points de vue et nous commençons par une analyse des performances des diffĂ©rentes variantes grĂące Ă  l'outil de l'Ă©volution de la densitĂ© du dĂ©bit. PrĂ©cisĂ©ment, nous commençons par revisiter le scĂ©nario du protocole IRSA avec la capacitĂ© de rĂ©ception de paquets multiples (MPR) au niveau du rĂ©cepteur. Ensuite, nous Ă©tudions IRSA dans diffĂ©rents scĂ©narios oĂč des hypothĂšses plus rĂ©alistes sont considĂ©rĂ©es comme : IRSA avec plusieurs puissances de transmission, avec effet de capture et avec des erreurs de dĂ©codage. Dans la deuxiĂšme partie de la thĂšse, nous nous concentrons sur l'apprentissage et l'ajustement dynamique des paramĂštres du protocole IRSA. Dans un premier temps, nous analysons les performances [...]The origin of the idea of adding intelligence to basic objects and making them communicate has been lost to history. But in recent times, the emergence of the Internet as a global communication network has also motived the use of its architecture and protocols to connect objects (such as the soda vending machine famously connected to the ARPANET in the 1980s). In the past two decades, many technological enhancements have been developed to enable the ``Internet of Things'' (IoT). A scenario of a typical IoT network is to connect embedded devices composed of environmental sensors, microcontrollers, and communication hardware, to a central collection node. The set of data gathered by these nodes will increasingly help in analyzing and precisely understanding the phenomenons and behaviors occurring in this environment. The applications of IoT technologies are endless because they are adaptable to almost any system that can provide information about its status, operation, and the environment and that one needs to monitor and control at a distance. Smart cities, healthcare, industrial automation, and wearable technology are some IoT applications that promise to make our life safer and easier. Some research and technology challenges need to be addressed for the implementation and full popularization of IoT applications including deployment, networking, security, resilience, and power control. This massive demand for connection in IoT networks will introduce new challenges in terms of connectivity, reliability, and technology. At the radio network level, IoT networks represent a huge inflow of various devices that communicate through the same shared radio medium. However, many of these devices are difficult to secure and handle. One major challenge to deploying IoT networks is the lack of efficient solutions that allow for a massive number of connections while meeting the low-latency and low-cost demands at the same time. In addition, recently, there has been a trend towards long-range communications systems for the IoT, including cellular networks. For many use cases, such as massive machine-type communications (mMTC), performance can be gained by moving away from the classical model of connection establishment and adopting grant-free, random access methods. Associated with physical layer techniques such as Successive Interference Cancellation (SIC), or Non-Orthogonal Multiple Access (NOMA), the performance of random access can be dramatically improved, giving rise to novel random access protocol designs. In this thesis, we focus on one of the modern candidates for random access protocols ``well-fitted'' to the IoT: Irregular Repetition Slotted ALOHA (IRSA). As solutions are needed to overcome the challenges of IoT, we study the IRSA random access scheme from new points of view and we start with an analysis of the performance of different variations through the density evolution tool. Precisely, we start by revisiting the scenario of the IRSA protocol in the case of Multiple Packet Reception (MPR) capability at the receiver. Then, we study IRSA in different scenarios where more realistic assumptions are considered, such as IRSA with multiple transmissions powers, with capture effect, and with decoding errors. In the second part of the thesis, we concentrate on learning and dynamically adjusting IRSA protocol parameters. First, we analyze the protocol performance in a centralized approach through a variant of Reinforcement Learning and in a distributed approach through Game Theory. We also optimize short frame length IRSA through a Deep Reinforcement Learning approach. Finally, we introduce a sensing capability to IRSA, in line with carrier sense principles, and we tentatively explore how one can learn part of sensing protocols with the help of Deep Learning tools

    Transmission sans connexion dans les réseaux sans fil

    No full text
    The origin of the idea of adding intelligence to basic objects and making them communicate has been lost to history. But in recent times, the emergence of the Internet as a global communication network has also motived the use of its architecture and protocols to connect objects (such as the soda vending machine famously connected to the ARPANET in the 1980s). In the past two decades, many technological enhancements have been developed to enable the ``Internet of Things'' (IoT). A scenario of a typical IoT network is to connect embedded devices composed of environmental sensors, microcontrollers, and communication hardware, to a central collection node. The set of data gathered by these nodes will increasingly help in analyzing and precisely understanding the phenomenons and behaviors occurring in this environment. The applications of IoT technologies are endless because they are adaptable to almost any system that can provide information about its status, operation, and the environment and that one needs to monitor and control at a distance. Smart cities, healthcare, industrial automation, and wearable technology are some IoT applications that promise to make our life safer and easier. Some research and technology challenges need to be addressed for the implementation and full popularization of IoT applications including deployment, networking, security, resilience, and power control. This massive demand for connection in IoT networks will introduce new challenges in terms of connectivity, reliability, and technology. At the radio network level, IoT networks represent a huge inflow of various devices that communicate through the same shared radio medium. However, many of these devices are difficult to secure and handle. One major challenge to deploying IoT networks is the lack of efficient solutions that allow for a massive number of connections while meeting the low-latency and low-cost demands at the same time. In addition, recently, there has been a trend towards long-range communications systems for the IoT, including cellular networks. For many use cases, such as massive machine-type communications (mMTC), performance can be gained by moving away from the classical model of connection establishment and adopting grant-free, random access methods. Associated with physical layer techniques such as Successive Interference Cancellation (SIC), or Non-Orthogonal Multiple Access (NOMA), the performance of random access can be dramatically improved, giving rise to novel random access protocol designs. In this thesis, we focus on one of the modern candidates for random access protocols ``well-fitted'' to the IoT: Irregular Repetition Slotted ALOHA (IRSA). As solutions are needed to overcome the challenges of IoT, we study the IRSA random access scheme from new points of view and we start with an analysis of the performance of different variations through the density evolution tool. Precisely, we start by revisiting the scenario of the IRSA protocol in the case of Multiple Packet Reception (MPR) capability at the receiver. Then, we study IRSA in different scenarios where more realistic assumptions are considered, such as IRSA with multiple transmissions powers, with capture effect, and with decoding errors. In the second part of the thesis, we concentrate on learning and dynamically adjusting IRSA protocol parameters. First, we analyze the protocol performance in a centralized approach through a variant of Reinforcement Learning and in a distributed approach through Game Theory. We also optimize short frame length IRSA through a Deep Reinforcement Learning approach. Finally, we introduce a sensing capability to IRSA, in line with carrier sense principles, and we tentatively explore how one can learn part of sensing protocols with the help of Deep Learning tools.L'origine concernant l'idĂ©e d'ajouter de l'intelligence aux objets de base et de les faire communiquer n'est pas connue prĂ©cisĂ©ment. Mais ces derniers temps, l'Ă©mergence d'Internet en tant que rĂ©seau de communication global a aussi motivĂ© l'utilisation de son architecture et de ses protocoles pour connecter des objets. C'est par exemple le cas cĂ©lĂšbre du distributeur automatique de sodas connectĂ© Ă  l'ARPANET dans les annĂ©es 1980. Au cours des deux derniĂšres dĂ©cennies, de nombreuses amĂ©liorations technologiques ont Ă©tĂ© dĂ©veloppĂ©es pour rendre possible l'Internet des objets (IoT). Un scĂ©nario d'un rĂ©seau IoT typique consiste Ă  connecter des dispositifs embarquĂ©s composĂ©s de capteurs environnementaux, de microcontrĂŽleurs et de matĂ©riel de communication Ă  un nƓud de collecte central. L'ensemble des donnĂ©es recueillies par ces nƓuds permettra d'analyser et de comprendre prĂ©cisĂ©ment les phĂ©nomĂšnes et comportements se produisant dans cet environnement. Les applications des technologies IoT sont infinies, car elles sont adaptables Ă  presque tous les systĂšmes, que l'on doit surveiller et contrĂŽler Ă  distance, pouvant fournir des informations sur son Ă©tat, son fonctionnement et son environnement. Les villes intelligentes, les soins, l'automatisation industrielle et la technologie portable sont quelques-unes des applications de l'IoT qui promettent de rendre notre vie plus sĂ»re et plus facile. Certains dĂ©fis en matiĂšre de recherche et de technologie doivent ĂȘtre relevĂ©s pour la mise en Ɠuvre et la large dissĂ©mination des applications de l'IoT comme le dĂ©ploiement, la mise en rĂ©seau, la sĂ©curitĂ©, la rĂ©silience et le contrĂŽle de l'alimentation des Ă©quipements. Cette demande massive de connexion dans les rĂ©seaux IoT introduit de nouveaux dĂ©fis en termes de connectivitĂ©, de fiabilitĂ© et de technologie. Au niveau de la radio, les rĂ©seaux IoT reprĂ©sentent un Ă©norme afflux de divers appareils qui communiquent via le mĂȘme support radio partagĂ©. Cependant, bon nombre de ces appareils sont difficiles Ă  sĂ©curiser et Ă  manipuler. L'un des principaux dĂ©fis du dĂ©ploiement des rĂ©seaux IoT est le manque de solutions efficaces qui permettent un nombre massif de connexions tout en rĂ©pondant en mĂȘme temps aux exigences de faible latence et de faible coĂ»t. De plus, il y a eu rĂ©cemment une tendance vers des systĂšmes de communication Ă  longue portĂ©e pour l'IoT et aussi pour les rĂ©seaux cellulaires. Pour de nombreux cas d'utilisation, tels que les communications massives de type machine (mMTC), les performances peuvent ĂȘtre amĂ©liorĂ©es en s'Ă©loignant du modĂšle classique d'Ă©tablissement de connexion et en adoptant des mĂ©thodes d'accĂšs alĂ©atoire sans attribution prĂ©dĂ©terminĂ©e. AssociĂ© Ă  des techniques de couche physique telles que l'annulation successive des interfĂ©rences (SIC) ou l'accĂšs multiple non orthogonal (NOMA), les performances de l'accĂšs alĂ©atoire peuvent ĂȘtre amĂ©liorĂ©es, donnant lieu Ă  de nouvelles conceptions de protocoles d'accĂšs alĂ©atoire. Dans cette thĂšse, nous nous concentrons sur l'un des candidats modernes pour les protocoles d'accĂšs alĂ©atoire bien adaptĂ©s Ă  l'IoT :ALOHA Ă  rĂ©pĂ©tition irrĂ©guliĂšre (IRSA). Comme des solutions sont nĂ©cessaires pour surmonter les dĂ©fis de l'IoT, nous Ă©tudions le schĂ©ma d'accĂšs alĂ©atoire IRSA sous de nouveaux points de vue et nous commençons par une analyse des performances des diffĂ©rentes variantes grĂące Ă  l'outil de l'Ă©volution de la densitĂ© du dĂ©bit. PrĂ©cisĂ©ment, nous commençons par revisiter le scĂ©nario du protocole IRSA avec la capacitĂ© de rĂ©ception de paquets multiples (MPR) au niveau du rĂ©cepteur. Ensuite, nous Ă©tudions IRSA dans diffĂ©rents scĂ©narios oĂč des hypothĂšses plus rĂ©alistes sont considĂ©rĂ©es comme : IRSA avec plusieurs puissances de transmission, avec effet de capture et avec des erreurs de dĂ©codage. Dans la deuxiĂšme partie de la thĂšse, nous nous concentrons sur l'apprentissage et l'ajustement dynamique des paramĂštres du protocole IRSA. Dans un premier temps, nous analysons les performances [...

    Transmission sans connexion dans les réseaux sans fil (IoT)

    No full text
    The origin of the idea of adding intelligence to basic objects and making them communicate has been lost to history. But in recent times, the emergence of the Internet as a global communication network has also motived the use of its architecture and protocols to connect objects (such as the soda vending machine famously connected to the ARPANET in the 1980s).In the past two decades, many technological enhancements have been developed to enable the ``Internet of Things'' (IoT). A scenario of a typical IoT network is to connect embedded devices composed of environmental sensors, microcontrollers, and communication hardware, to a central collection node. The set of data gathered by these nodes will increasingly help in analyzing and precisely understanding the phenomenons and behaviors occurring in this environment. The applications of IoT technologies are endless because they are adaptable to almost any system that can provide information about its status, operation, and the environment and that one needs to monitor and control at a distance. Smart cities, healthcare, industrial automation, and wearable technology are some IoT applications that promise to make our life safer and easier. Some research and technology challenges need to be addressed for the implementation and full popularization of IoT applications including deployment, networking, security, resilience, and power control. This massive demand for connection in IoT networks will introduce new challenges in terms of connectivity, reliability, and technology. At the radio network level, IoT networks represent a huge inflow of various devices that communicate through the same shared radio medium. However, many of these devices are difficult to secure and handle. One major challenge to deploying IoT networks is the lack of efficient solutions that allow for a massive number of connections while meeting the low-latency and low-cost demands at the same time.In addition, recently, there has been a trend towards long-range communications systems for the IoT, including cellular networks. For many use cases, such as massive machine-type communications (mMTC), performance can be gained by moving away from the classical model of connection establishment and adopting grant-free, random access methods. Associated with physical layer techniques such as Successive Interference Cancellation (SIC), or Non-Orthogonal Multiple Access (NOMA), the performance of random access can be dramatically improved, giving rise to novel random access protocol designs.In this thesis, we focus on one of the modern candidates for random access protocols ``well-fitted'' to the IoT: Irregular Repetition Slotted ALOHA (IRSA). As solutions are needed to overcome the challenges of IoT, we study the IRSA random access scheme from new points of viewand we start with an analysis of the performance of different variations through the density evolution tool.Precisely, we start by revisiting the scenario of the IRSA protocol in the case of Multiple Packet Reception (MPR) capability at the receiver. Then, we study IRSA in different scenarios where more realistic assumptions are considered, such as IRSA with multiple transmissions powers, with capture effect, and with decoding errors.In the second part of the thesis, we concentrate on learning and dynamically adjusting IRSA protocol parameters. First, we analyze the protocol performance in a centralized approach through a variant of Reinforcement Learning and in a distributed approach through Game Theory. We also optimize short frame length IRSA through a Deep Reinforcement Learning approach. Finally, we introduce a sensing capability to IRSA, in line with carrier sense principles, and we tentatively explore how one can learn part of sensing protocols with the help of Deep Learning tools.L'origine concernant l'idĂ©e d'ajouter de l'intelligence aux objets de base et de les faire communiquer n'est pas connue prĂ©cisĂ©ment. Mais ces derniers temps, l'Ă©mergence d'Internet en tant que rĂ©seau de communication global a aussi motivĂ© l'utilisation de son architecture et de ses protocoles pour connecter des objets. C'est par exemple le cas cĂ©lĂšbre du distributeur automatique de sodas connectĂ© Ă  l'ARPANET dans les annĂ©es 1980.Au cours des deux derniĂšres dĂ©cennies, de nombreuses amĂ©liorations technologiques ont Ă©tĂ© dĂ©veloppĂ©es pour rendre possible l'Internet des objets (IoT). Un scĂ©nario d'un rĂ©seau IoT typique consiste Ă  connecter des dispositifs embarquĂ©s composĂ©s de capteurs environnementaux, de microcontrĂŽleurs et de matĂ©riel de communication Ă  un nƓud de collecte central. L'ensemble des donnĂ©es recueillies par ces nƓuds permettra d'analyser et de comprendre prĂ©cisĂ©ment les phĂ©nomĂšnes et comportements se produisant dans cet environnement. Les applications des technologies IoT sont infinies, car elles sont adaptables Ă  presque tous les systĂšmes, que l'on doit surveiller et contrĂŽler Ă  distance, pouvant fournir des informations sur son Ă©tat, son fonctionnement et son environnement.Les villes intelligentes, les soins, l'automatisation industrielle et la technologie portable sont quelques-unes des applications de l'IoT qui promettent de rendre notre vie plus sĂ»re et plus facile. Certains dĂ©fis en matiĂšre de recherche et de technologie doivent ĂȘtre relevĂ©s pour la mise en Ɠuvre et la large dissĂ©mination des applications de l'IoT comme le dĂ©ploiement, la mise en rĂ©seau, la sĂ©curitĂ©, la rĂ©silience et le contrĂŽle de l'alimentation des Ă©quipements. Cette demande massive de connexion dans les rĂ©seaux IoT introduit de nouveaux dĂ©fis en termes de connectivitĂ©, de fiabilitĂ© et de technologie. Au niveau de la radio, les rĂ©seaux IoT reprĂ©sentent un Ă©norme afflux de divers appareils qui communiquent via le mĂȘme support radio partagĂ©. Cependant, bon nombre de ces appareils sont difficiles Ă  sĂ©curiser et Ă  manipuler. L'un des principaux dĂ©fis du dĂ©ploiement des rĂ©seaux IoT est le manque de solutions efficaces qui permettent un nombre massif de connexions tout en rĂ©pondant en mĂȘme temps aux exigences de faible latence et de faible coĂ»t.De plus, il y a eu rĂ©cemment une tendance vers des systĂšmes de communication Ă  longue portĂ©e pour l'IoT et aussi pour les rĂ©seaux cellulaires. Pour de nombreux cas d'utilisation, tels que les communications massives de type machine (mMTC), les performances peuvent ĂȘtre amĂ©liorĂ©es en s'Ă©loignant du modĂšle classique d'Ă©tablissement de connexion et en adoptant des mĂ©thodes d'accĂšs alĂ©atoire sans attribution prĂ©dĂ©terminĂ©e. AssociĂ© Ă  des techniques de couche physique telles que l'annulation successive des interfĂ©rences (SIC) ou l'accĂšs multiple non orthogonal (NOMA), les performances de l'accĂšs alĂ©atoire peuvent ĂȘtre amĂ©liorĂ©es, donnant lieu Ă  de nouvelles conceptions de protocoles d'accĂšs alĂ©atoire.Dans cette thĂšse, nous nous concentrons sur l'un des candidats modernes pour les protocoles d'accĂšs alĂ©atoire bien adaptĂ©s Ă  l'IoT :ALOHA Ă  rĂ©pĂ©tition irrĂ©guliĂšre (IRSA).Comme des solutions sont nĂ©cessaires pour surmonter les dĂ©fis de l'IoT, nous Ă©tudions le schĂ©ma d'accĂšs alĂ©atoire IRSA sous de nouveaux points de vue et nous commençons par une analyse des performances des diffĂ©rentes variantes grĂące Ă  l'outil de l'Ă©volution de la densitĂ© du dĂ©bit.PrĂ©cisĂ©ment, nous commençons par revisiter le scĂ©nario du protocole IRSA avec la capacitĂ© de rĂ©ception de paquets multiples (MPR) au niveau du rĂ©cepteur. Ensuite, nous Ă©tudions IRSA dans diffĂ©rents scĂ©narios oĂč des hypothĂšses plus rĂ©alistes sont considĂ©rĂ©es comme : IRSA avec plusieurs puissances de transmission, avec effet de capture et avec des erreurs de dĂ©codage.Dans la deuxiĂšme partie de la thĂšse, nous nous concentrons sur l'apprentissage et l'ajustement dynamique des paramĂštres du protocole IRSA. Dans un premier temps, nous analysons les performances du protocole dans une approche centralisĂ©e via une variante de l'Apprentissage par Renforcement et dans une approche distribuĂ©e via la ThĂ©orie des Jeux. Nous optimisons Ă©galement IRSA avec une courte longueur de trame grĂące Ă  une approche d'apprentissage par renforcement profond. Enfin, nous introduisons pour IRSA une capacitĂ© de dĂ©tection, fonctionnant suivant les principes de la dĂ©tection de porteuse, et nous explorons comment peut-on apprendre une partie des protocoles de dĂ©tection Ă  l'aide d'outils d'apprentissage profond

    Transmission sans connexion dans les réseaux sans fil

    No full text
    The origin of the idea of adding intelligence to basic objects and making them communicate has been lost to history. But in recent times, the emergence of the Internet as a global communication network has also motived the use of its architecture and protocols to connect objects (such as the soda vending machine famously connected to the ARPANET in the 1980s). In the past two decades, many technological enhancements have been developed to enable the ``Internet of Things'' (IoT). A scenario of a typical IoT network is to connect embedded devices composed of environmental sensors, microcontrollers, and communication hardware, to a central collection node. The set of data gathered by these nodes will increasingly help in analyzing and precisely understanding the phenomenons and behaviors occurring in this environment. The applications of IoT technologies are endless because they are adaptable to almost any system that can provide information about its status, operation, and the environment and that one needs to monitor and control at a distance. Smart cities, healthcare, industrial automation, and wearable technology are some IoT applications that promise to make our life safer and easier. Some research and technology challenges need to be addressed for the implementation and full popularization of IoT applications including deployment, networking, security, resilience, and power control. This massive demand for connection in IoT networks will introduce new challenges in terms of connectivity, reliability, and technology. At the radio network level, IoT networks represent a huge inflow of various devices that communicate through the same shared radio medium. However, many of these devices are difficult to secure and handle. One major challenge to deploying IoT networks is the lack of efficient solutions that allow for a massive number of connections while meeting the low-latency and low-cost demands at the same time. In addition, recently, there has been a trend towards long-range communications systems for the IoT, including cellular networks. For many use cases, such as massive machine-type communications (mMTC), performance can be gained by moving away from the classical model of connection establishment and adopting grant-free, random access methods. Associated with physical layer techniques such as Successive Interference Cancellation (SIC), or Non-Orthogonal Multiple Access (NOMA), the performance of random access can be dramatically improved, giving rise to novel random access protocol designs. In this thesis, we focus on one of the modern candidates for random access protocols ``well-fitted'' to the IoT: Irregular Repetition Slotted ALOHA (IRSA). As solutions are needed to overcome the challenges of IoT, we study the IRSA random access scheme from new points of view and we start with an analysis of the performance of different variations through the density evolution tool. Precisely, we start by revisiting the scenario of the IRSA protocol in the case of Multiple Packet Reception (MPR) capability at the receiver. Then, we study IRSA in different scenarios where more realistic assumptions are considered, such as IRSA with multiple transmissions powers, with capture effect, and with decoding errors. In the second part of the thesis, we concentrate on learning and dynamically adjusting IRSA protocol parameters. First, we analyze the protocol performance in a centralized approach through a variant of Reinforcement Learning and in a distributed approach through Game Theory. We also optimize short frame length IRSA through a Deep Reinforcement Learning approach. Finally, we introduce a sensing capability to IRSA, in line with carrier sense principles, and we tentatively explore how one can learn part of sensing protocols with the help of Deep Learning tools.L'origine concernant l'idĂ©e d'ajouter de l'intelligence aux objets de base et de les faire communiquer n'est pas connue prĂ©cisĂ©ment. Mais ces derniers temps, l'Ă©mergence d'Internet en tant que rĂ©seau de communication global a aussi motivĂ© l'utilisation de son architecture et de ses protocoles pour connecter des objets. C'est par exemple le cas cĂ©lĂšbre du distributeur automatique de sodas connectĂ© Ă  l'ARPANET dans les annĂ©es 1980. Au cours des deux derniĂšres dĂ©cennies, de nombreuses amĂ©liorations technologiques ont Ă©tĂ© dĂ©veloppĂ©es pour rendre possible l'Internet des objets (IoT). Un scĂ©nario d'un rĂ©seau IoT typique consiste Ă  connecter des dispositifs embarquĂ©s composĂ©s de capteurs environnementaux, de microcontrĂŽleurs et de matĂ©riel de communication Ă  un nƓud de collecte central. L'ensemble des donnĂ©es recueillies par ces nƓuds permettra d'analyser et de comprendre prĂ©cisĂ©ment les phĂ©nomĂšnes et comportements se produisant dans cet environnement. Les applications des technologies IoT sont infinies, car elles sont adaptables Ă  presque tous les systĂšmes, que l'on doit surveiller et contrĂŽler Ă  distance, pouvant fournir des informations sur son Ă©tat, son fonctionnement et son environnement. Les villes intelligentes, les soins, l'automatisation industrielle et la technologie portable sont quelques-unes des applications de l'IoT qui promettent de rendre notre vie plus sĂ»re et plus facile. Certains dĂ©fis en matiĂšre de recherche et de technologie doivent ĂȘtre relevĂ©s pour la mise en Ɠuvre et la large dissĂ©mination des applications de l'IoT comme le dĂ©ploiement, la mise en rĂ©seau, la sĂ©curitĂ©, la rĂ©silience et le contrĂŽle de l'alimentation des Ă©quipements. Cette demande massive de connexion dans les rĂ©seaux IoT introduit de nouveaux dĂ©fis en termes de connectivitĂ©, de fiabilitĂ© et de technologie. Au niveau de la radio, les rĂ©seaux IoT reprĂ©sentent un Ă©norme afflux de divers appareils qui communiquent via le mĂȘme support radio partagĂ©. Cependant, bon nombre de ces appareils sont difficiles Ă  sĂ©curiser et Ă  manipuler. L'un des principaux dĂ©fis du dĂ©ploiement des rĂ©seaux IoT est le manque de solutions efficaces qui permettent un nombre massif de connexions tout en rĂ©pondant en mĂȘme temps aux exigences de faible latence et de faible coĂ»t. De plus, il y a eu rĂ©cemment une tendance vers des systĂšmes de communication Ă  longue portĂ©e pour l'IoT et aussi pour les rĂ©seaux cellulaires. Pour de nombreux cas d'utilisation, tels que les communications massives de type machine (mMTC), les performances peuvent ĂȘtre amĂ©liorĂ©es en s'Ă©loignant du modĂšle classique d'Ă©tablissement de connexion et en adoptant des mĂ©thodes d'accĂšs alĂ©atoire sans attribution prĂ©dĂ©terminĂ©e. AssociĂ© Ă  des techniques de couche physique telles que l'annulation successive des interfĂ©rences (SIC) ou l'accĂšs multiple non orthogonal (NOMA), les performances de l'accĂšs alĂ©atoire peuvent ĂȘtre amĂ©liorĂ©es, donnant lieu Ă  de nouvelles conceptions de protocoles d'accĂšs alĂ©atoire. Dans cette thĂšse, nous nous concentrons sur l'un des candidats modernes pour les protocoles d'accĂšs alĂ©atoire bien adaptĂ©s Ă  l'IoT :ALOHA Ă  rĂ©pĂ©tition irrĂ©guliĂšre (IRSA). Comme des solutions sont nĂ©cessaires pour surmonter les dĂ©fis de l'IoT, nous Ă©tudions le schĂ©ma d'accĂšs alĂ©atoire IRSA sous de nouveaux points de vue et nous commençons par une analyse des performances des diffĂ©rentes variantes grĂące Ă  l'outil de l'Ă©volution de la densitĂ© du dĂ©bit. PrĂ©cisĂ©ment, nous commençons par revisiter le scĂ©nario du protocole IRSA avec la capacitĂ© de rĂ©ception de paquets multiples (MPR) au niveau du rĂ©cepteur. Ensuite, nous Ă©tudions IRSA dans diffĂ©rents scĂ©narios oĂč des hypothĂšses plus rĂ©alistes sont considĂ©rĂ©es comme : IRSA avec plusieurs puissances de transmission, avec effet de capture et avec des erreurs de dĂ©codage. Dans la deuxiĂšme partie de la thĂšse, nous nous concentrons sur l'apprentissage et l'ajustement dynamique des paramĂštres du protocole IRSA. Dans un premier temps, nous analysons les performances [...
    corecore